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ABSTRACT 

Properties of the phase space of the standard map with memory are investigated. This map was obtained 
from a kicked fractional differential equation. Depending on the value of the map parameter and the 
fractional order of the derivative in the original differential equation, this nonlinear dynamical system 
demonstrates attractors (fixed points, stable periodic trajectories, slow converging and slow diverging 
trajectories, ballistic trajectories, and fractal-like structures) and/or chaotic trajectories. At least one type 
of fractal-like sticky attractors in the chaotic sea was observed. 

© 2009 Elsevier B.V. All rights reserved. 

1. Introduction 

The standard map (SM) can be derived from the differential 
equation describing kicked rotator. The description of many physi- 
cal systems and effects (Fermi acceleration, comet dynamics, etc.) 
can be reduced to the studying of the SM [1 ]. The SM provides the 
simplest model of the universal generic area preserving map and it 
is one of the most widely studied maps. The topics examined in- 
clude fixed points, elementary structures of islands and a chaotic 
sea, and fractional kinetics [1-3]. 

It was recently realized that many physical systems, includ- 
ing systems of oscillators with long range interaction [4,5], non- 
Markovian systems with memory ([6, Chapter 10], [7-11]), fractal 
media [12], etc., can be described by the fractional differential 
equations (FDE) [6,13,14]. As with the usual differential equations, 
the reduction of FDEs to the corresponding maps can provide a 
valuable tool for the analysis of the properties of the original sys- 
tems. As in the case of the SM, the fractional standard map (FSM), 
derived in [15] from the fractional differential equation describing 
a kicked system, is perhaps the best candidate to start a general in- 
vestigation of the properties of maps which can be obtained from 
FDEs. 

As it was shown in [15], maps that can be derived from FDEs 
are of the type of discrete maps with memory. One-dimensional 
maps with memory, in which the present state of evolution de- 
pends on all past states, were studied previously in [16-21]. They 
were not derived from differential equations. Most results were ob- 
tained for the generalizations of the logistic map. 

In the physical systems the transition from integer order time 
derivatives to fractional (of a lesser order) introduces additional 
damping and is similar in appearance to additional friction [6,22]. 
Accordingly, in the case of the FSM we may expect transformation 
of the islands of stability and the accelerator mode islands into at- 
tractors (points, attracting trajectories, strange attractors). Because 
the damping in systems with fractional derivatives is based on the 
internal causes different from the external forces of friction [22, 
23], the corresponding attractors are also different from the attrac- 
tors of the regular systems with friction and are called fractional 
attractors [22]. Even in one-dimensional cases [16-21] most of the 
results were obtained numerically. An additional dimension makes 
the problem even more complex and most of the results in the 
present Letter were obtained numerically. 

2. FSM, initial conditions 

* Corresponding author at: Courant Institute of Mathematical Sciences. New York 
University, 251 Mercer St., New York, NY 10012. USA. 

E-mail address: edelman@cims.nyu.edu (M. Edelman). 

The standard map in the form 

Pn+1 =Pn-rCsinxn> 

Xn+l=Xn + p„+i     (mod27r) (1) 

0375-9601 /$ - see front matter © 2009 Elsevier B.V. All rights reserved, 
doi: 10.1016/j.physleta.2009.11.008 
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can be derived from the differential equation 

00    /1       \ 
x + Ksin(x)£5(--n)=0. (2) 

(3) 

By replacing the second-order time derivative in Eq. (2) with 
the Riemann-Liouville derivative oD" one obtains a fractional 
equation of motion in the form 

00    /t       \ 
0D?x+Ksin(x)£<5( --n)=0   (l<a<2), 

n=0    ^ ' 

where 

0Df x(t) = D?ol?~am 

1        dm   f     x(r)dr 
= ;— /  rr   (ni — 1 <a ^m), 

r(m-a)dtmJ  (t-r)a-m+1 

0 (4) 

Df=dm/dtm, and 0/" is a fractional integral. The initial conditions 
for (3) are 

(0D«-1x)(0+) = p1 

(0D?-2x)(0+)=b. (5) 

The Cauchy type problem (3) and (5) is equivalent to the Volterra 
integral equation of the second kind [24-26] 

x(t) = Pi   ta-\ ta-2 
r(o) r(o -1) 

K    /-sin[x(T)]i:~0«(f-n)dT 
— ( r(a)J (t-r) l-o 

Defining the momentum as 

i-i. 

(6) 

(7) p(t) = oDf-'x(0, 

and performing integration in (6) one can derive the equation for 
the FSM in the form (for the thorough derivation see [26]) 

Pn+i =p„-Ksinx„, 

1 

rip) *n+1=-p7-^£P'-+lMn-'' + l) 

1=0 
b 

r(o - D 
(n + l)""2   (mod2jr), 

where 

V„(m)==m0'-1 -(m-1)*"1. 

(8) 

(9) 

(10) 

Here it is assumed that 7 = 1 and 1 < a ^ 2. The form of Eq. (9) 
which provides a more clear correspondence with the SM (a = 2) 
in the case fa = 0 is presented in Section 4 (Eq. (31)). 

The second initial condition in (5) can be written as 

(0D«-2x)(0+)=  lim o'2_ax(t) 

t-.o+r(2-a)j  (t-r)«- 

= b   (l<a^2), (11) 

which requires b = 0 in order to have a solution bounded at t = 0 
for a < 2. The assumption b = 0 leads to the FSM equations which 

in the limiting case a = 2 coincide with the equations for the stan- 
dard map under the condition Xo = 0. 

In this Letter the FSM is taken in the form derived in [15] which 
coincides with (8) and (9) if b = 0. It is also assumed that x0 = 0 
and the results can be compared to those obtained for the SM with 
xo = 0 and arbitrary po. As a test, for the SM and for the FSM with 
a =2 and the same initial conditions numerical calculations show 
that phase portraits look identical. 

System of Eqs. (8) and (9) can be considered either in a cylin- 
drical phase space (x mod 2n) or in unbounded phase space. The 
second case is convenient to study transport. The trajectories in 
the second case are easily related to the first case. The FSM has 
no periodicity in p (the SM does) and cannot be considered on a 
torus. 

3. Stable fixed point 

The SM has stable fixed points at (0, 27rn) for K < Kc = 4. It is 
easy to see that point (0,0) is also a fixed point for the FSM. Di- 
rect computations using (8) and (9) demonstrate that for the small 
initial values of po there is a clear transition from the convergence 
to the fixed point to divergence when the value of the parameter 
K crosses the curve K = Kc(a) on Fig. 1(a) from smaller to larger 
values. 

The following system describes the evolution of trajectories 
near fixed point (0,0) 

<5pn+1 =8p„-KSxn, 

1      - 
Sx„+i = —— ]T.5pi+i Va(n - i + 1). r(a) 

(12) 

(13) 
i=0 

The solution can be found in the form 

1-1 /   ,   v I 

^="»g~(^)(^)    *>«. (14) 

<5xn = Po 
r(or) 

The origin of the terms in parentheses, as well as the definition 

00 

V«/ = £(-D'<+,Va(k) (16) 

will become clear in Section 5. Eqs. (12)-(16) lead to the following 
iterative relationships 

n 

xn+i.i = -]T(n-m + l)a-1xm,i_1   (0<iO), (17) 
m=i 

n 

m = i 

with the initial and boundary conditions 

Pn+l.n =Xn+l,n = (—!)", Pn+l,0 = l. 

Pn+l,f = -£xm,l-l    (0<i<n) 

Xn+l,0 = (l + D 
a-\ (19) 

From (17) and (18) it is clear that the series (14) and (15) are 
alternating and it is natural to apply the Dirichlet's test to verify 
their convergence. This can be done by considering the totals 

sn=IH£>' (20) 
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Fig. 1. Stability of the fixed point (0,0): (a) The fixed point is stable below the 
curve K - Kc(a); (b) Values of S^ and \x obtained after 20000 iterations of 
Eqs. (22) and (23). As a -• 2 the values Sx and \x increase rapidly. For a - 1.999, 
Soo = 276 and lx — 552 after 20000 iterations; (c) An example of the typical evo- 
lution of Sx and /c over the first 200 iterations for 1 < a < 2. This particular 
figure corresponds to a = 1.8; (d) Deviation of the values Sn and l„ from the val- 
ues Soo * 2.04337 and lx m 3.37416 for a = 1.8 during the first 20000 iterations 
(this type of behavior remains for 1 < a < 2); (e) Evolution of trajectories with 
Po = 1.5 + 0.00051, 0 < i <200 for the case K = 3, a = 1.9. The line segments cor- 
respond to the nth iteration on the set of trajectories with close initial conditions. 
The evolution of the trajectories with smaller po is similar; (!) 105 iterations on 
both of two trajectories for K = 2, a = 1.4. The one at the bottom with po = 0.3 
is a fast converging trajectory. The upper trajectory with po = 5.3 is an example of 
the ASCT in which piooooo * 0.042. 

They obey the following iterative rules 

B-1 

Sn=ri 

/n = 1 

a-l 

Va, 
2>-f)a-,S|.    Si-1, 
1=1 

va, E*<- 

(21) 

(22) 

(23) 
i=i 

Computer simulations show that values of S„ and /„ converge 
to the values (-1)n+,Soo and (-l)n+1/oo depicted on Fig. 1(b). 
Figs. 1(c), (d) show an example of the typical evolution of Sn and 
/„ over the first 20000 iterations. It means that the condition of 
convergence of <5p„ and Sxn is 

2r(or) 
<1. (24) 

Numerical evaluation of the equality K = 2r(a)/Va/ perfectly re- 
produces the curve on Fig. 1(a) obtained by the direct computa- 
tions of (8) and (9). 

Because not only the stability problem (12) and (13), but also 
the original map (8) and (9), contains convolutions, the use of gen- 
erating functions (27 ], which allows transformations of sums of 
products into products of sums, could be utilized in the inves- 
tigation of the FSM and some other maps with memory. As an 
example, in the particular case of the stability problem (12) and 
(13), the introduction of the generating functions 

K 
WaV) = —-J2[(i + \)^ -f'-'Y r(o) 

i=0 

X(0 = ]ToV 
i=0 

p(t)=£)«p(t', 
1 = 0 

leads to 

X(t). 
PoWa(t) t 

P(0 = po 

K      1-t(l-Wa(f)) 

1 + Wa(t) 

l-t(l-W«(0) 

(25) 

(26) 

(27) 

(28) 

(29) 

Now the original problem is reduced to the problem of the asymp- 
totic behavior at t = 0 of the derivatives of the analytic functions 
X(t) and P(t), which is still quite complex and is not considered 
in this Letter. 

In the region of the parameter space where the fixed point is 
stable, the fixed point is surrounded by a finite basin of attrac- 
tion, whose width W depends on the values of K and a. For 
example, for K = 3 and a = 1.9 the width of the basin of at- 
traction is 1.6 < W < 1.7. Simulations of thousands of trajectories 
with po < 1.6 performed by the authors, of which only 200 (with 
1.5 < po < 16) are presented in Fig. 1(e), show only converging 
trajectories, whereas among 200 trajectories with 1.6 < po < 1.7 
in Fig. 2(a) there are trajectories converging to the fixed point as 
well as some trajectories converging to attracting slow diverging 
trajectories (ASDT), whose properties will be discussed in the fol- 
lowing section. Trajectories in Fig. 1(e) converge very rapidly. In 
the case K = 2 and o; = 1.4 in addition to the trajectories which 
converge rapidly and ASDTs there exist attracting slow converging 
trajectories (ASCT) (Fig. 1(f)). 

4. Attracting slow diverging trajectories (ASDT) 

As it can be seen from Fig. 2(a), the phase portrait on a cylinder 
of the FSM with K = 3 and a = 1.9 contains only one fixed point 
and ASDTs approximately equally spaced along the p-axis. This re- 
sult corresponds to the fact that the standard map with K = 3 
has only one central island. More complex structure of the stan- 
dard map's phase space for smaller values of K (for example for 
K = 2 and K = 0.6) can explain more complex structure of the 
FSM's phase space, where periodic attracting trajectories with pe- 
riods T = 4 (Fig. 2(b)), T = 2, and 7 = 3 (Fig. 2(c)) are present. 

Each ASDT has its own basin of attraction (see Fig. 2(d)). Be- 
tween those basins two initially close trajectories at first diverge, 
but then converge to the same or different fixed point or ASDT. 

Numerical evaluation shows that for ASDTs which converge to 
trajectories along the p-axis (x -> X|jm = 0) in the area of stabil- 
ity (which is the same as for the stability of the fixed point) the 
following holds (for large n see Fig. 3(a)) 
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Fig. 2. Phase space with ASDTs: (a) The same values of parameters as in Fig. 1(e) but p0 = 1.6 + 0.0005i; (b) 200 iterations on trajectories with p0 = 4 + 0.02i, 0 < i < 500 
for the case K = 2, a = 1.9. Trajectories converging to the fixed point. ASDTs with x = 0, and period 4 attracting trajectories are present; (c) 2000 iterations on trajectories 
with po = 2 + 0.04i. 0 ^ i < 50 for the case K = 0.6, or = 1.9. Trajectories converging to the fixed point, period 2 and 3 attracting trajectories are present; (d) The same 
values of parameters as in Fig. 1(e) but po = 5 + 0.005i. 
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Fig. 3. Evaluation of the behavior of the ASDTs: (a) Momenta for two ASDTs with 
xn * 2nn in the unbounded space (in this example K — 2). The solid line is related 
to a trajectory with or = 1.9 and its slope is 0.1. The dashed line corresponds to 
a trajectory with or = 1.5 and its slope is 0.5; (b) Deviation of momenta from the 
asymptotic formula for two ASDTs with xn * 27rn in the unbounded space, or = 1.9, 
and fC = 2. The dashed line has po = 7 and the solid one po = 6; (c) Relative de- 
viation of the momenta for the trajectories in (b) from the asymptotic formula; 
(d) Deviation of the x-coordinates for the trajectories in (b) from the asymptotic 
formula. 

Pn = Cn 2-a (30) 

The constant C can be easily evaluated for 1.8 < a < 2. Consider 
an ASDT with X|,m =0, 7 = 1, and 2nM, where M is an integer, 

constant step in x in the unbounded space. Then Eq. (9) with b = 0 
gives 

Xn+1 
1 

•X„ = 
r«x) 5I(Pfc+i -Pk)V«(n-k + 1) 

k=1 

+ Pi 
r(a) 

Va(n-r-l). (31) 

For large n the last term is small (~n"_2) and the following holds 

n 

]T>*+i - Pk)Va(n -k +1) = 2?rMr(a). (32) 
x=1 

With the assumption p„ ~ n2-a it can be shown that for values 
of a > 1.8 considered the terms in the last sum with large k are 
small and in the series representation of V„(n — k+1) it is possible 
to keep only terms of the highest order in k/n. Thus, (32) leads to 
the approximations 

2-a 

Pn « P0 + 
2jrMr(a)n 

a-1 
2jjM(2-a)r(a) 

KCa-Dri"-1 

(33) 

(34) 

In the case K =2, a = 1.9 Figs. 3(b)-(d) show two trajectories with 
M = 1 (initial momenta po = 6 and p0 = 7) approaching an ASDT: 
the deviation from the asymptotic (33) and (34) and the relative 
difference with respect to (33). 

5. Period 2 stable trajectory 

The SM has two stable points of the period T = 2 trajectory for 
4 < K < 2n with the property 

Pn+l = -Pn, Xn+1 = (35) 
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Fig. 4. Period 2 stable trajectory: (a) An example of T = 2 attractor for K = 4.5. 
as 1.9. One trajectory with xo =0, pa = 0.513; (b) p\ of X| for the case of K = 4.5; 
(c) pi of a for the case of K - 4.5; (d) xi of a for the case of K = 4.5; (e) p„ - p\ 
for the trajectory in (a). After 1000 iterations |p„ - pil < 10~7; (f) x„ - xi for the 
trajectory in (a). After 1000 iterations |x„ -X|| < 10"7. 

The same points persist in the numerical experiments for the FSM 
(Fig. 4(a)). These points are attracting most of the trajectories with 
small PQ. Assuming the existence of a 7 = 2 attracting trajectory, 
it is possible to calculate the coordinates of its attracting points 
(x/, pi) and (-X/, -pi). In this case from (8) and (9) 

K 
p, = jsin(x,), 

^^r^51"^^-1^1^'0- 2r(a) 
k-l 

Finally, the equation for x/ takes the form 

K 

*' ~~ 2Y{a) 

where 

Va,sin(x(), 

(36) 

(37) 

(38) 

1)k+1V„(k) (39) 
k=\ 

and can be easily calculated numerically. From (38) the condition 
of the existence of T = 2 trajectory 

K > Kc(a) (40) 

1500 

1000 

Q,       500 

is exactly opposite to (24). It is satisfied above the curve K = Kc(a) 
on Fig. 1(a). For a = 2 (40) produces the well-known condition 

Fig. 5. Cascade of bifurcation type trajectories; (a) 120000 iterations on a single 
trajectory with K = 4.5, a = 1.65, po = 0.3. The trajectory occasionally sticks to 
a CBTT but then always recovers into the chaotic sea; (b) 100000 iterations on a 
trajectory with K = 3.5, a = 1.1, po = 20. The trajectory very fast turns into a CBTT 
which slowly converges to a fractal type area. 

K > 4 for the SM. The results of calculations of the xj and p/ for 
the cases K = 4.5, 1 < a < 2 presented in Figs. 4(b)-(d) perfectly 
coincide with the results of the direct computations of (8) and (9) 
with b = 0. After 1000 iterations presented in Figs. 4(e), (f) the 
values of deviations |pn - pd and |xn - x;| are less than 10-7. 

6. Cascade of bifurcations type trajectories (CBTT) 

Period 2 stable trajectories have limited basins of attraction. 
Trajectories that don't fall into those areas reveal a diverse vari- 
ety of properties, from period two slow attracting trajectories to 
fractal type attractors and cascade of bifurcations type trajectories 
(CBTT). Fig. 5(a) presents a single chaotic trajectory which sticks 
to the areas similar to the cascade of bifurcations which are well 
known for the logistic map. In Fig. 5(b) a single trajectory falls very 
rapidly into one of the attracting CBTTs. Because the bifurcation di- 
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Fig. 6. Examples of phase space for K > In: (a) An attracting ballistic trajectory with K = 6.908745, a = 1.999, po = 0.7; (b) A chaotic trajectory for K = 6.908745, a = 1.9. 

agram of the logistic map has fractal properties (see for example 
Chapter 2 in [28]), it is expected that the structure to which this 
trajectory slowly converges also possesses fractal features. 

The properties of this type of attractors, as well as the prop- 
erties different types of observed during computer simulations 
chaotic, attracting, and ballistic trajectories for K >2n (see Fig. 6) 
will be considered in the subsequent article. 

7. Fractional attractors and their stability 

The problems of existence and stability of the fractional attrac- 
tors for the systems described by the FDEs were addressed in a 
few recent papers. It was noticed in [22] that the properties of the 
fractional chaotic attractors are different from the properties of the 
"regular" chaotic attractors and may have some pseudochaotic fea- 
tures. The problem of existence of multi-scroll fractional chaotic 
attractors was considered in [29). The problem of stability of the 
stationary solutions (fixed points for ODEs) of systems described 
by the fractional ODEs and PDEs was considered in [30-32]. In 
the above mentioned articles the equations contained the Caputo 
fractional derivatives, whereas in the present Letter the Riemann- 
Liouville fractional derivative is used. This fact does not allow a 
direct comparison of the results. The results [22,29-32] were sup- 
ported by a relatively small number of computations and this is 
understandable, taking into account all the difficulties of perform- 
ing numerical simulations for the equations with fractional deriva- 
tives. 

The use of the FSM, which is equivalent to the original FDE, 
allows performing thousands of runs of simulations of the kicked 
fractional system with two parameters: K and or. The FSM also 
allows making some analytic deductions and revealing some prop- 
erties of the fractional attractors which were not reported before: 

(a) The stability of the fixed point (0,0) of the FSM is different 
not only from the stability of the fixed point in the domain of the 
regular motion (zero Lyapunov exponent) of the SM, but also from 
the stability of fixed attracting points of the regular (not fractional) 
dissipative systems like, for example, the dissipative standard map 
(Zaslavsky map) [33]. The difference is in the way in which trajec- 
tories approach the attracting point. In the FSM this way depends 
on the initial conditions. For example, in Fig. 1(f) there are two 
trajectories approaching the same fixed point: one is fast spiraling 
into the attractor and the other is slowly converging. 

(b) Stable period 2 attracting trajectories exist only in the 
asymptotic sense-they do not represent any real periodic solu- 
tions. If the initial condition is chosen in a period two stable 
attracting point, this trajectory will immediately jump out of this 
point and where it will end depends on the values of K and a. 

(c) All the FSM attractors exist in the sense that there are 
trajectories which converge into those attractors. But if an initial 
condition is taken on any of the attracting trajectories (except for 

the fixed point), they will most likely not evolve along the same 
trajectory. 

8. Conclusion 

In this Letter properties of the phase space of the FSM were 
investigated. It was shown that islands of regular motion of the 
SM in the FSM turn into attractors (points, attracting trajecto- 
ries, and fractal-like structures). Properties of the attracting fixed 
points, period two trajectories, ASCTs, and ASDTs were considered. 
This consideration allows the description of the evolution of the 
dynamical variable x of the original fractional dynamical system, 
a system described by the FDE reducible to the FSM. 

The explanation of the CBTTs, which are interesting phenom- 
ena, requires further detailed investigation. Chaotic trajectories that 
spend some time near CBTTs, which can be called "sticky attrac- 
tors" in analogy to "sticky islands" of the SM, are good candidates 
for the investigation of anomalous diffusion. Phase space transport 
was not considered in this Letter. How general the properties of 
the phase space of the FSM are will become clear after further in- 
vestigations of different fractional maps, maps with memory which 
can be derived from the FDEs, and particular those suggested in 
[15], will be conducted. The fact that so many physical systems can 
be reduced to studying of the SM gives a hope that those physi- 
cal systems which can be reduced to studying the FSM will be 
found. 
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Abstract 
Discrete maps with long-term memory are obtained from nonlinear differential 
equations with Riemann-Liouville and Caputo fractional derivatives. These 
maps are generalizations of the well-known universal map. The memory means 
that their present state is determined by all past states with special forms of 
weights. To obtain discrete maps from fractional differential equations, we 
use the equivalence of the Cauchy-type problems and to the nonlinear Volterra 
integral equations of the second kind. General forms of the universal maps 
with memory, which take into account general initial conditions for the cases 
of the Riemann-Liouville and Caputo fractional derivative, are suggested. 

PACS numbers:   05.45.-a, 45.10.Hj 
Mathematics Subject Classification:   26A33, 37E05 

1. Introduction 

A dynamical system consists of a set of possible states, together with a rule that determines the 
present state in terms of past states. If we require that the rule be deterministic, then we can 
define the present state uniquely from the past states. A discrete-time system without memory 
takes the current state as input and updates the situation by producing a new state as output. 
All physical classical models are described by differential or integro-differential equations, 
and the discrete-time systems can be considered as a simplified version of these equations. A 
discrete form of the time evolution equation is called the map. Maps are important because 
they encode the behavior of deterministic systems. The assumption of determinism is that the 
output of the map can be uniquely determined from the input. In general, the present state is 
uniquely determined by all past states, and we have a discrete map with memory. Discrete 
maps are used for the study of evolution problems, possibly as a substitute of differential 
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equations [1-3]. They lead to a much simpler formalism, which is particularly useful in 
simulations. The universal discrete map is one of the most widely studied maps. In this paper, 
we consider discrete maps with memory that can be used to study solutions of fractional 
differential equations [4-7]. 

The nonlinear dynamics can be considered in terms of discrete maps. It is a very important 
step in understanding the qualitative behavior of systems described by differential equations. 
The derivatives of non-integer orders are a generalization of the ordinary differentiation of 
integer order. Fractional differentiation with respect to time is characterized by long-term 
memory effects. The discrete maps with memory are considered in [8-14]. The interesting 
question is a connection of fractional differential equations and discrete maps with memory. 
It is important to derive discrete maps with memory from the equation of motion. 

In [14], we prove that the discrete maps with memory can be obtained from differential 
equations with fractional derivatives. The fractional generalization of the universal map was 
obtained [14] from a differential equation with Riemann-Liouville fractional derivatives. The 
Riemann-Liouville derivative has some notable disadvantages such as the hyper-singular 
improper integral, where the order of singularity is higher than the dimension, and nonzero of 
the fractional derivative of constants, which would entail that dissipation does not vanish for a 
system in equilibrium. The desire to formulate initial value problems for mechanical systems 
leads to the use of Caputo fractional derivatives rather than the Riemann-Liouville fractional 
derivative. 

It is possible to state that the Caputo fractional derivatives allow us to give more 
clear mechanical interpretation. At the same time, we cannot state that the Riemann- 
Liouville fractional derivative does not have a physical interpretation and that it shows 
unphysical behavior. Physical interpretations of the Riemann-Liouville fractional derivatives 
are more complicated than Caputo fractional derivatives. But the Riemann-Liouville fractional 
derivatives naturally appear for real physical systems in electrodynamics. We note that the 
dielectric susceptibility of a wide class of dielectric materials follows, over extended frequency 
ranges, a fractional power-law frequency dependence that is called the 'universal' response 
[15, 16]. As was proved in [17, 18], the electromagnetic fields in such dielectric media are 
described by differential equations with Riemann-Liouville fractional time derivatives. These 
fractional equations for 'universal' electromagnetic waves in dielectric media are common to 
a wide class of materials, regardless of the type of physical structure, chemical composition, 
or of the nature of the polarizing species. Therefore, we cannot state that Riemann-Liouville 
fractional time derivatives do not have a physical interpretation. The physical interpretation 
of these derivatives in electrodynamics is connected with the frequency dependence of the 
dielectric susceptibility. As a result, the discrete maps with memory that are connected with 
differential equations with Riemann-Liouville fractional derivatives are very important to 
physical applications, and these derivatives naturally appear for real physical systems. 

For computer simulation and physical application, it is very important to take into account 
the initial conditions for discrete maps with memory that are obtained from differential 
equations with Riemann-Liouville fractional time derivatives. In [14], these conditions are 
not considered. In this paper to take into account the initial condition, we use the equivalence 
of the differential equation with Riemann-Liouville and Caputo fractional derivatives and the 
Volterra integral equation. This approach is more general than the auxiliary variable method 
that is used in [14]. The proof of the result for Riemann-Liouville fractional derivatives 
is more complicated in comparison with the results for the Caputo fractional derivative. In 
this paper, we prove that the discrete maps with memory can be obtained from differential 
equations with the Caputo fractional derivative. The fractional generalization of the universal 
map is obtained from a fractional differential equation with Caputo derivatives. 
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The universal maps with memory are obtained by using the equivalence of the fractional 
differential equation and the Volterra integral equation. We reduce the Cauchy-type problem 
for the differential equations with the Caputo and Riemann-Liouville fractional derivatives 
to nonlinear Volterra integral equations of second kind. The equivalence of this Cauchy- 
type problem for the fractional equations with the Caputo derivative and the correspondent 
Volterra integral equation was proved by Kilbas and Marzan in [19, 20]. We also use that 
the Cauchy-type problem for the differential equations with the Riemann-Liouville fractional 
derivative can be reduced to a Volterra integral equation. The equivalence of this Cauchy-type 
problem and the correspondent Volterra equation was proved by Kilbas, Bonilla and Trujillo 
in [21, 22]. 

In section 2, differential equations with integer derivative and universal maps without 
memory are considered to fix notations and provide convenient references. In section 3, 
fractional differential equations with the Riemann-Liouville derivative and universal maps 
with memory are discussed. In section 4, the difference between the Caputo and Riemann- 
Liouville fractional derivatives is discussed. In section 5, fractional differential equations 
with the Caputo derivative and correspondent discrete maps with memory are considered. A 
fractional generalization of the universal map is obtained from kicked differential equations 
with the Caputo fractional derivative of order 1 < a ^ 2. The usual universal map is a special 
case of the universal map with memory. Finally, a short conclusion is given in section 6. 

2. Integer derivative and universal map without memory 

In this section, differential equations with derivative of integer order and the universal map 
without memory are considered to fix notations and provide convenient references. 

Let us consider the equation of motion 

iE'(H-' Dfx(t) + KG[x(t)]}^8[--k)=0 (1) 
k=\ 

in which perturbation is a periodic sequence of delta-function-type pulses (kicks) following 
with period T = 27r/v, K is an amplitude of the pulses, D2 = d2/dt2, and G[x] is some 
real-valued function. It is well known that this differential equation can be represented in the 
form of the discrete map 

xn+] -xn = pn+\T, pn+x - pn = —KT G[xn]. (2) 

Equations (2) are called the universal map. For details, see for example [1-3]. 
The traditional method of derivation of the universal map equations from the differential 

equations is considered in section 5.1 of [2], We use another method of derivation of these 
equations to fix notations and provide convenient references. We obtain the universal map by 
using the equivalence of the differential equation and the Volterra integral equation. 

Proposition 1.   The Cauchy-type problem for the differential equations 

D)x(t) = p(t), (3) 

D>(0 = -KG[x(»)] f>(£-*) (4) 

with the initial conditions 

x(0)=xQ, p(0) = Po (5) 

3 
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is equivalent to the universal map equations of the form 

n 

xn+l = jc0 + po(n + 1)7" - KT2 Y, G[xk] (n + 1 - k), (6) 
k=\ 

n 

pn+i = p0- KTY,G[xk]. (7) 

Proof.   Consider the nonlinear differential equation of second order 

D}x(t) = G[t,x(t)], (0^t^tf) (8) 

on a finite interval [0, t/] of the real axis, with the initial conditions 

*(0)=*o, (D,'jt)(0) = po- (9) 

The Cauchy-type problem of the form (8), (9) is equivalent to the Volterra integral equation 
of second kind 

x(t) =x0 + p0t+ I   dr G[x, *(r)] (t - r). (10) 
Jo 

Using the function 

G[t,x(t)] = -KG[x(t)] 

for nT < t < (n + 1)7, we obtain 

x(t) =x0 + p0t -KTJ2 G[x(kT)] (t - kT). (11) 

For the momentum p(t) = D)x(t), equation (11) gives 
n 

p(t) = pQ-KTY,G[x(kT)]. (12) 
k=\ 

The solution of the left side of the (n + l)th kick 

xn+\ = x(tn+\ - 0) = lim x(T{n + 1) - e), (13) 
£->0+ 

p„+i = p(tn+i - 0) = lim p(T(.n + 1) - e), (14) 
£-*0+ 

where tn+\ = (n + 1)7\ has the form (6) and (7). 
This ends the proof. • 

Remark 1. We note that equations (6) and (7) can be rewritten in the form (2). Using 
equations (6) and (7), the differences xn+\ — xn and pn+\ — p„ give equations (2) of the 
universal map. 

Remark 2.   If G[x] = —x, then equations (2) give the Anosov-type system 

Xn+i ~x„ = p„+\T, pn+\ - pn = KTxn. (15) 

For G[x] — sin(*), equations (2) are 

xn+\ ~x„ = pn+\T, p„+i - p„ = -KTsin(x„). (16) 

This map is known as the standard or Chirikov-Taylor map [1 ]. 
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3. Riemann-Liouville fractional derivative and universal map with memory 

In this section, we discuss nonlinear differential equations with the left-sided Riemann- 
Liouville fractional derivative oOf defined for a > 0 by 

where D" — d"/dt", and QI" is a fractional integration [4, 6, 7]. 
We consider the fractional differential equation 

oflfx(r)-G[».*«], (18) 

where G[t, x(t)] is a real-valued function, O^n-1 < a ^ n, and t > 0, with the initial 
conditions 

{0D?-kx)(0+) m ck, Jk = l n. (19) 

The notation (0D"~kx)(0+) means that the limit is taken at almost all points of the right-sided 
neighborhood (0, 0 + e), e > 0, of zero as follows: 

(0Df-*Jt)(0+) = lim oDT^CO. (* « 1.... ,n - 1), 

(oD*-"*)(Q+) - Um o/,""**(0. 

The Cauchy-type problem (18) and (19) can be reduced to the nonlinear Volterra integral 
equation of second kind 

£fr(a-* + l)' r(a)/0    (r-r)'-« l 

where r > 0. The result was obtained by Kilbas, Bonilla and Trujillo in [21, 22]. For 
a = n = 2, equation (20) gives (10). 

The Cauchy-type problem (18) and (19) and the nonlinear Volterra integral equation (20) 
are equivalent in the sense that, if x(t) e L(0, tf) satisfies one of these relations, then it also 
satisfies the other. In [21, 22] (see also theorem 3.1. in section 3.2.1 of [7]), this result is 
proved by assuming that the function G[t, x] belongs to L(0, tf) for any x e W C R. 

Let us give the basic theorem regarding the nonlinear differential equation involving the 
Riemann-Liouville fractional derivative. 

Kilbas-Bonilla-Trujillo theorem. Let W be an open set inRand let G[t, x], where t 6 (0,//] 
and x € W, be a real-valued function such that G[t, x] € L(0,tf) for any x € W. Let x(t) 
be a Lebesgue measurable function on (0, tf). Ifx(t) 6 L(0, //), then x(t) satisfies almost 
everywhere equation (IS) and conditions (19) if, and only if x(t) satisfies almost everywhere 
the integral equation (20). 

Proof.  This theorem is proved in [21, 22] (see also theorem 3.1. in section 3.2.1 of [7]).   • 

In [14] we consider a fractional generalization of equation (1) of the form 

0D?x(t) + KG[x(t)]Yj8(l--k)=0, (1<«<2), (21) 

where / > 0, and QD" is the Riemann-Liouville fractional derivative defined by (17). Let us 
give the following theorem for equation (21). 
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Proposition 2. The Cauchy-type problem for the fractional differential equation of the form 
(21) with the initial conditions 

(0Drlx)(0+) = cu (0Dr2x)(0+) = {oI?-ax)(0+) = c2 (22) 

is equivalent to the equation 

*<0 = l^V"1 + Ti^T,'"'1 -TTsY, GWm (' - kTT-\ (23) V(a) T(a - 1) T(a) £f 

where nT < t < (n + \)T. 

Proof.   Using the function 

G[t,x(t)] = -KG[x]'£i&(--k), (24) 

equation (21) has the form of (18) with the Riemann-Liouville fractional derivative of order 
a, where 1 < a < 2. It allows us to use the Kilbas-Bonilla-Trujillo theorem. As a result, 
equation (21) with initial conditions (19) of the form (22) is equivalent to the nonlinear Volterra 
integral equation 

y 00        -/ 
x{l) = vh''"l+-F7£LT,ta~2-77^T,      drG[jt(r)](f-r)«-'*(l-fc),     (25) r(ot)        r(a-i)        r(a) f^jQ \T     / 

where t > 0. If nT < t < (n + 1)7", then the integration in (25) with respect to r gives (23). 
This ends the proof. • 

To obtain equations of discrete map a momentum must be defined. There are two 
possibilities of defining the momentum: 

p{t) = 0DTxx(t), p(t) = D)x{t). (26) 

Let us use the first definition. Then the momentum is defined by the fractional derivative 
of order a — 1. Using the definition of the Riemann-Liouville fractional derivative (17) in the 
form 

0D?x(t) = D] 0I?-ax(t), (1 < a < 2), (27) 

we define the momentum 

p(t)=0Dr]x(t) = !  /"   *(T)dT (1<«<2),    (28) 

where x(r) is defined for r € (0, t). Then 

oDfJtM = D)p(t), (1<«<2). (29) 

Using momentum p{t) and coordinate x(t), equation (21) can be represented in the 
Hamiltonian form 

oDf-'tW = P('), (30) 

D)p(t) = -KG[x(.t)]Y^&(j-k\. (31) 
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Proposition 3.   The Cauchy-type problem for the fractional differential equations of the form 
(30) and (31) with the initial conditions 

(0D,o,-1Ar)(0+) = c1, (0£>r2*)(0+) = (o/,2""*)(0+) = c2 (32) 

is equivalent to the discrete map equations 

xn+\ 
c\T"-x,      „„.,      c2T"-2  ,      „a_,     KTa 

•(« + l)-1 + -j -An + I)""2 - —- F G[xk] (n + 1 - *)-',      (33) 
r» r(a-ir r(«) , 

pB+1 = c, - KT £ G[xk]. (34) 

Proof.  We use proposition 2 to prove this statement. To obtain an equation for the momentum 
(28), we use the following fractional derivatives of power functions (see section 2.1 in [7]): 

flDf(f-a)''-1= Ja
iP) At-a)'-1-. a £ 0.     fi > 0,     t > a, (35) 

r(/3-a) 

0D°i"-( = 0, k = \ n,    n-l<o<n. (36) 

These equations give 

oD"!"-1 = r(o). oD^°-2=0 

and 

,D,'(« -a)0"1 =r(a). 
We note that equation (23) for x(x) can be used only if r e (nT, t), where nT < t < 

(n + 1)7". The function x(x) in the fractional derivative QD° of the form (28) must be defined 
for all r e (0, t). We cannot take the derivative QD" of the functions (r - kT)"~] that are 
defined for r 6 (kT, t). In order to use equation (23) on the interval (0, t), we must modify 
the sum in equation (23) by using the Heaviside step function. Then equation (23) has the 
form 

*(r) = -^-t"-1 + _. C2  ,,r°-2 - £- T GMT)] (t - kT)-' 0(r - *D, 
r(a) r(or - i) r(a) *-^ 

(37) 

where T 6 (0, l). Using the relation 

0Z??(0 - a)""1 0(» - a)) = „D,«(r - a)""1 = !», (38) 

equations (28) and (37) give 
n 

p(t) = CX-KTJ2 G[x(kT)], (39) 
k=\ 

where nT < t < (n + 1)7". Then the solution of the left side of the (n + l)th kick 

Pn+, = ci - *r £ or**]. (40) 
*=1 

As a result, we obtain a universal map with memory in the form of equations (33) 
and (34). 

This ends the proof. D 
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Remark 3.   For a = n = 2 equations (33) and (34) give the usual universal map (6) and (7). 

Remark 4.  We note that the map (33) and (34) with 

Cl=Pl, c2=0 

was obtained in [ 14] in the form 

ycr-l    " 

pn+1 =Pn- KTG{xn), (1 < a < 2), (42) 

where pi = ci, and the function V„(z) is defined by 

VM) = z"'1 - (z - \)"-\ (*>1). (43) 

In [14], we obtain these map equations by using an auxiliary variable ?(f) such that 

£D,2-a£(0=*(0. 

The nonlinear Volterra integral equations and the general initial conditions (32) are not used 
in [14]. In the general case, the fractional differential equation of the kicked system (21) is 
equivalent to the discrete map equations 

xn+x = ^-r pM V„(n - k + 1) + If     in + I)""2, (44) 
r(<*) *rf r(a-i) 

p,+i = p» - KTG(xn), (1 < a < 2), (45) 

where pi = ci. Here we take into account the initial conditions (32). The second term of the 
right-hand side of equation (44) is not considered in [14]. Using —1 < a — 2 < 0, we have 

lim(n + l)a-2 = 0. 
n-*oo 

Therefore, the case of large values of n is equivalent to Ci = 0. 

Let us give the proposition regarding the second definition of the momentum p(t) = 
D)x(f). 

Proposition 4.   The Cauchy-type problem for the fractional differential equations 

D)x{t) = p{t), (46) 

oD?*(0 = -*G[x(f)]jna(i-*), (l<a<2) (47) 

with the initial conditions 

(0Dr'*)(0+) = cu (0Z>r2;c)(0+) = (0/
2-a*)(0+) = c2 (48) 

is equivalent to the discrete map equations 

*„+i = £^V(" + I)"-1 + f}7" nfr + I)""2 - FTT E G^<" + ! " ^a"'-      <49) 
r(a) r(a - 1) T(a) ^ 
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r(a-l) T(a-l) 

Proof.  We define the momentum 

p(t) = DJx(t). 

If nT < t < (n + 1)7, then the differentiation of (23) with respect to t gives 

fj a_2 ^ cjja - 2) >a_3        xr 
n 

Here we use the relation 

f(a) = (a- l)T(a- 1), (1 < a < 2). 

T(a - 1) T(a - 1) T(a - 1) f-f 
(51) 

Using equations (23) and (51), we can obtain the solution of the left side of the (n + l)th kick 
(13) and (14). As a result, we have equations (49) and (50). 

This ends the proof. • 

Remark 5. Equations (49) and (50) describe a generalization of equations (6) and (7). If 
a = n = 2 and C2 = xo, c\ = po, then equation (49) gives (6) and (7). 

Remark 6.   In equations (50) and (51), we can use 

Cjiot — 2) C2 

r(a- 1) ~ r(a - 2) 
for 1 < a < 2. 

Remark 7. If we use the definition p(t) = Djx(t), then the Hamiltonian form of the 
equations of motion will be more complicated than (30) and (31) since 

D,2
0/,2-°^(r)^ 0/,

2-aD2jc(0. 

Remark 8. Note that we use the usual momentum p{t) = Djx(t). In this case, the values 
C] and C2 are not connected with p(0) and x(0). If we use the momentum pit) = oDf~xx{t), 
thenci = p(0). 

4. Riemann-Liouville and Caputo fractional derivatives 

In [14] we consider nonlinear differential equations with Riemann-Liouville fractional 
derivatives. The discrete maps with memory are obtained from these equations. The problems 
with initial conditions for the Riemann-Liouville fractional derivative are not discussed. 

The Riemann-Liouville fractional derivative has some notable disadvantages in 
applications in mechanics such as the hyper-singular improper integral, where the order of 
singularity is higher than the dimension, and nonzero of the fractional derivative of constants, 
which would entail that dissipation does not vanish for a system in equilibrium. The desire 
to use the usual initial value problems for mechanical systems leads to the use of Caputo 
fractional derivatives [7, 6] rather than the Riemann-Liouville fractional derivative. 
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The left-sided Caputo fractional derivative [7, 23-25] of order or > 0 is defined by 

»D"/(" - rth>[F^0* - oir°D"m> (52) 

where n — 1 < a < n, and o/" is the left-sided Riemann-Liouville fractional integral of order 
a > 0 that is defined by 

1      I"    f(T)dr 

°'"m = 7W)Lv^'       ('>0)' (53) 

This definition is, of course, more restrictive than the Riemann-Liouville fractional 
derivative [4, 7] in that it requires the absolute integrability of the derivative of order «. 
The Caputo fractional derivative first computes an ordinary derivative followed by a fractional 
integral to achieve the desire order of fractional derivative. The Riemann-Liouville fractional 
derivative is computed in the reverse order. Integration by part of (52) will lead to 

c
0D?x«) = 0Dfjt(0 - £ _-£L-p«ffi). (54) 

It is observed that the second term in equation (54) regularizes the Caputo fractional derivative 
to avoid the potentially divergence from singular integration at t = 0. In addition, the Caputo 
fractional differentiation of a constant results in zero 

0
cD?C = 0. 

Note that the Riemann-Liouville fractional derivative of a constant need not be zero, and we 
have 

If the Caputo fractional derivative is used instead of the Riemann-Liouville fractional 
derivative, then the initial conditions for fractional dynamical systems are the same as those 
for the usual dynamical systems. The Caputo formulation of fractional calculus can be more 
applicable in mechanics than the Riemann-Liouville formulation. 

5. Caputo fractional derivative and universal map with memory 

In this section, we study a generalization of differential equation (1) by the Caputo fractional 
derivative. The universal map with memory is derived from this fractional equation. 

We consider the nonlinear differential equation of order a, where 0 ^ n — 1 < a ^ n, 

$Dax(t) = G[t,x(t)], (P<t<f/). (55) 

involving the Caputo fractional derivative £ D" on a finite interval [0, tj] of the real axis, with 
the initial conditions 

(D**)(0) = ck, k = 0,...,n-\. (56) 

Kilbas and Marzan [ 19, 20] proved the equivalence of the Cauchy-type problem of the form 
(55), (56) and the Volterra integral equation of second kind 

a—1 ,        -i 

x(t) = T 77'* + F7T /  dr G[z, x{x)] (t - r)""1 (57) 

in the space C-1[0, f/]. Fora = n = 2 equation (57) gives (10). 

10 
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Let us give the basic theorem regarding the nonlinear differential equation involving the 
Caputo fractional derivative. 

Kilbas-Marzan theorem. The Cauchy-type problem (55) and (56) and the nonlinear Volterra 
integral equation (57) are equivalent in the sense that, ifx(t) € C[0, tf] satisfies one of these 
relations, then it also satisfies the other. 

Proof. In [19, 20] (see also [7], theorem 3.24.) this theorem is proved by assuming that a 
function G[t, x] for any x e W c R belongs to CK(0, //) with 0 ^ y < 1, y < a. Here 
Cy(0, tf) is the weighted space of functions /[/] given on (0, tf], such that tY f[t] e C(0, tf). 
This ends the proof. • 

We consider the fractional differential equation of the form 

£Dfx(/) + KG[jr(0]X)a(£-*)=0. (1 < a < 2), (58) 

where JD° is the Caputo fractional derivative, with the initial conditions 

AC(0)=JCO, (D'jt)(0) = pQ. (59) 

Using p(t) = Djx(t), equation (58) can be rewritten in the Hamilton form. 

Proposition 5.   The Cauchy-type problem for the fractional differential equations 

D)x(t) = p(t), (60) 

.£.(*-). ^Df-,pU) = -KC[x(t)]}^S[--k), (l<o<2) (61) 
k=\ 

with the initial conditions 

*(0)=x0. p(0) = Po (62) 

is equivalent to the discrete map equations 

XB+1 =x0 + Po(n + \)T - —- Y(n + \- ky-lG[Xkl (63) 
r(o)^j 

Pnu = Po -   *T" ,. T (n + 1 - k)"-2G[xk]. (64) 

Proof.   We use the Kilbas-Marzan theorem with the function 

G[t ,x(t)\ = -KG[x(t)] fS (j - k) 
k=\    ^ ' 

The Cauchy-type problem (58) and (59) is equivalent to the Volterra integral equation of 
second kind 

(65) 

in the space of continuously differentiable functions x(t) € C'[0, tf]. 

n 

K     °°   C' 11        \ 
x(t) =xo + pot-—-^2J   dr(t - t)"-' G[X(T)}8 I- - k\ 
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If nT < t < (n + 1)7", then equation (65) gives 

r(a) 

We define the momenta 

p{t) = D)x(t). (67) 

Then equations (66) and (67) give 

Pit) = Po- r/
KT .T(l- kT)a-2G[x(kT)], (nT </<(« +1)7), (68) r(« -1) ti 

where we use T(a) = (or — l)T(a — 1). 
The solution of the left side of the (n + l)th kick (13) and (14) can be represented by 

equations (63) and (64), where we use the condition of continuity x(tn +0) = x(t„ — 0). 
This ends the proof. • 

Remark 9. Equations (63) and (64) define a generalization of the universal map. This 
map is derived from a fractional differential equation with Caputo derivatives without any 
approximations. The main property of the suggested map is a long-term memory that means 
that their present state depends on all past states with a power-law form of weights. 

Remark 10. If a = 2, then equations (63) and (64) give the universal map of the form (6) 
and (7) that is equivalent to equations (2). As a result, the usual universal map is a special 
case of this universal map with memory. 

Remark 11. By analogy with proposition 5, it is easy to obtain the universal map with 
memory from fractional equation (58) with a > 2. 

6. Conclusion 

The suggested discrete maps with memory are generalizations of the universal map. These 
maps describe fractional dynamics of complex physical systems. The suggested universal 
maps with memory are equivalent to the correspondent fractional kicked differential equations. 
We obtain a discrete map from a fractional differential equation by using the equivalence of 
the Cauchy-type problem and the nonlinear Volterra integral equation of second kind. An 
approximation for fractional derivatives of these equations is not used. 

It is important to obtain and to study discrete maps which correspond to the real physical 
systems described by the fractional differential equations. In mechanics and electrodynamics, 
we can consider viscoelastic and dielectric materials as media with memory. We note that the 
dielectric susceptibility of a wide class of dielectric materials follows, over extended frequency 
ranges, a fractional power-law frequency dependence that is called the 'universal' response 
[15, 16]. As was proved in [17, 18], the electromagnetic fields in such dielectric media 
are described by differential equations with fractional time derivatives. These fractional 
equations for electromagnetic waves in dielectric media are common to a wide class of 
materials, regardless of the type of physical structure, chemical composition, or of the nature 
of the polarizing species, whether dipoles, electrons or ions. We hope that it is possible to 
obtain the discrete maps with memory which correspond to the real dielectric media described 
by the fractional differential equations. 

12 
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Abstract 

Using kicked differential equations of motion with derivatives of non-integer orders, we obtain gen- 

eralizations of the dissipative standard map. The main property of these generalized maps, which are 

called fractional maps, is long-term memory. The memory effect in the fractional maps means that 

their present state of evolution depends on all past states with special forms of weights. The fractional 

dissipative standard maps are used to study attractors of the systems described by kicked fractional 

differential equations. 



Discrete maps are widely used to study general properties of dynamical sys- 

tems. In those cases when they can be derived from differential equations, their 

analysis gives the exact properties of the corresponding systems. In this ar- 

ticle we derive discrete maps (fractional maps) from the fractional differential 

equations, which correspond to the fractional generalizations of the dissipative 

standard map [1], We demonstrate how the attractors of the fractional maps 

are different from the attractors of the dissipative standard map. 

I.    INTRODUCTION 

There is a number of distinct, areas of physics where basic problems can be reduced to 

the study of simple discrete maps. Discrete maps as substitutes of differential equations 

have been used to study evolution problems in [2-6]. They lead to a simpler formalism, 

which is particularly useful in simulations. The dissipative standard map is one of the most 

widely studied maps. In this paper we consider fractional generalizations of the dissipative 

standard map which are described by fractional differential equations [7-9]. 

The treatment of nonlinear dynamics in terms of discrete maps is a very important step in 

understanding the qualitative behavior of systems described by differential equations. The 

derivatives of non-integer orders are a natural generalization of the ordinary differentiation 

of the integer order. The fractional differentiation with respect to time is characterized 

by long-term memory effects which correspond to intrinsic dissipative processes in physical 

systems. The application of memory effects to discrete maps means that their present state 

of evolution depends on all past states [10-15, 17]. 

Discrete maps with memory can be derived (see [17]) from equations of motion with 

fractional derivatives. In Ref. [17] a fractional generalization of the standard map has been 

derived from a fractional differential equation. A fractional generalization of the dissipative 

standard map was also suggested in [17]. Unfortunately, in that generalization a dissipation 

was introduced by the change of the variable pn -> — bpn. The map equations were not 

directly connected with a fractional equation of motion. In this paper we propose two 

generalizations of the dissipative standard map. The first one is derived from a differential 

equation with fractional clamped kicks. The second generalization of the dissipative standard 

map is derived from a fractional differential equation (kickes are not fractional) . A nonlinear 



system with fractional derivatives perturbed by a periodic force exhibits a new type of chaotic 

motion which can be called the fractional chaotic attractor. Fractional discrete maps [17] are 

used to study new types of at tractors of fractional dynamics described by kicked fractional 

equations. In this paper some fractional differential equations of motion of kicked systems 

with friction are considered. Corresponding discrete maps with memory are derived from 

these equations. The fractional generalizations of the dissipative standard map are suggested 

and these maps are used in computer simulations. 

II.    DISCRETE MAPS WITHOUT MEMORY 

In this section, a brief review of discrete maps is considered to fix notations and provide 

convenient references. For details, see [2-6]. 

A.     Standard map 

Let us consider the equation of motion 

x + K m\(x) ]T 6 (t - n) = 0, (1) 

in which perturbation is a periodic sequence of delta-function type pulses (kicks) following 

with period T = 1. K is the amplitude of the pulses. This equation can be presented in the 

Hamiltonian form 

x ap,    p + Ksm{x) y~]$(t - rH = 0. (2) 

It is well-known that these equations can be represented (see for example Chapter 5 in [3]) 

in the form of discrete map 

*n+l  =Zn+Pn+l, (3) 

Ptt+j = Vn ~ K sin(z„). (4) 

Equations (3) and (4) are called the standard map. This map is also called the Chirikov 

map [4]. 



B. Dissipative standard map 

The dissipative standard map [1, 18, 19] is 

Xn+i = Xn + /iV„ .,.i + ft, (5) 

Yn^=e «{Yn + esin(Xn)), (6) 

where fi — (e* — l)/g. The dissipative standard map is also called the Zaslavsky map. Note 

that a shift ft does not play an important role and it can be put to zero (ft = 0). The 

dissipative standard map with ft = 0 can be represented by the equations 

"^n+l = Xn + In+lt (7) 

Pn+1 - -6Fn - Z rin(An). (8) 

For the parameters 

2 = -£/i.f.-«r    Pn = ,iV;;    6 - -«"' (9) 

equations (7) and (8) give Eqs. (5) and (6) with ft = 0. 

For b — — 1 and Z = K, we get the standard map which is described by Eqs. (3) and (4) 

with T — 1. 

Note that for large q —> 00 (for small 6 -> 0) Eqs. (7) and (8) with Z = -K shrink to 

the proposed by Arnold [20] one-dimensional sine-map 

Xn^^Xn + KHm(Xn). (10) 

C. Kicked damped rotator map 

The equation of motion for kicked damped rotator is 

x + qx = KG[x)J2S{t~ nT) • (u) 

It is well-known [5] that Eq. (11) gives the two-dimensional map 

1 - e "«T 

xn+1 = i„ + [p„ + KG{xn)\, (12) 

Ph+i-e-*rIp» +if <?(*»)]. (13) 



This map is known as the kicked damped rotator map. The phase volume shrinks each time 

step by a factor exp(-^). The map is defined by two important parameters, dissipation 

constant q and force amplitude K. These equations can be rewritten in the form 

e"r - 1 
•2'n+l — 3'<n H Pn+li 

q 

PnU = ^"T{pn + KG(xn)l 

It is easy to see that these equations give the dissipative standard map (7) and (8) with 

fi = 0 if we use 

Xn = xn.    Yn = pn,    e = K,    T=l,    G(x) = sin(x). 

This allows us to derive dissipative standard map (5) and (6) from the differential equation. 

X + qX = e sin(A') £<$(*- n). (14) 

These equations give the discrete map defined by Eqs. (5) and (6) with fl = 0. 

III.    FRACTIONAL STANDARD MAP AND DISSIPATION 

A fractional generalization of the differential equation (1) has been suggested in [17]. The 

discrete map winch corresponds to the fractional equation of order 1 < a < 2 was derived. 

This map can be considered as a generalization of the standard map for the case 1 < a < 2. 

We consider a fractional generalization of (1) in the form 

OS 

0Dfx + Ksm{x)Y^S(t - n) = 0,    (1< a < 2), (15) 

where 0Df is the Riemann-LiouvHle fractional derivative [7 9j, which is defined by 

Here we use the notation D\ — cP/dt2, and o/f is a fractional integration [7-9]. 

Defining the momentum as 

p(t) = 0DTlx(t), 

and using the initial conditions 

(oDr,.*)(0+) = p„     (0Dr2x)(0+) - b, (17) 



it is possible to derive the equation for the fractional standard map. 

Proposition 1. The fractional differential equation of the kicked system (15) is equiva- 

lent to the discrete, map 

1      n t 

Pn4 1 = Pn ~ K 8in(Xn),       (1< Cr < 2), (19) 

wAere t/ie function Va(z) is defined by 

Va(z) = ar*"1 - (* - 1)° l. (20) 

Proof of this Proposition is given in [21]. 

A fractional generalization of the dissipative standard map suggested in [1, 18] can be 

defined by 
1      - 

xn* i = p7-r 2jp*+iVa(n - fc + 1),    (1< a < 2), (21) 

Pn+i = -*Pn - ^ sm(xn), (22) 

where the parameters are defined by conditions (9). For b = — 1 and Z = K Eqs. (21) 

and (22) give the fractional standard map with T = 1. Note that this fractional dissipative 

standard map is not derived from a fractional differential equation. This map is derived 

by pn -+ — bp„ in the fractional standard map. Fractional dissipative standard map can be 

derived from fractional differential equations. In this paper, we derive two fractional gen- 

eralizations of the dissipative standard map which are obtained from fractional differential 

equations. 

IV. FRACTIONAL DERIVATIVE IN THE KICKED TERM AND THE FIRST 

FRACTIONAL DISSIPATIVE STANDARD MAP 

In this section we suggest the first fractional generalization of differential equation (11) 

for a kicked damped rotator. In this generalization we introduce a fractional derivative in 

the kicked damped term, i.e. the term of a periodic sequence of delta-function type pulses 

(kicks), and derive the corresponding discrete map. 



Consider the fractional generalization of equation (11) in the form 

00 

DfX[t) - qD\X{t) m £ sin (jJDf X\ J^ <*(* ~ «),    (0 < P < 1), (23) 
i=0 

where q € R, and %Df is the Caputo fractional derivative [9] of the order 0 < 3 < I defined 

by 

[(t'!
T

T),
dXlT).     (0<3<1). (24) gntx-tf'Dtx-r^l^fTF 

Here we use the notation D\ = d/dt, and o/? is a fractional integration [7-9]. For /3 = 0 

fractional equation (23) gives equation (11). Note that we use the minus on the left-hand 

side of Eq. (23), where q can be a positive or negative value. Fractional derivative (
a Dt X 

is presented in the kicked damped term. 

Proposition 2. The fractional differential equation of the kicked system (S3) is equiva- 

lent to the discrete map 

(25) 
1 - e"« 

•^n+l = X,; H 'n+ii 

n-i 

where the functions Wi-${a,b} art. defined by 

W2.^{a,b) = a^-^^^frO - ftafe) - F(l - 0,a(6+l)) 

and T(a, 6) is </ie incomplete Gamma function 

r(o,6)= /   y° le »dy. 

Proof. Fractional equation (23) can be presented in the Hamiltonian form 

x = y, 
oo 

r - gy = c sm{$D?X) ]T *(< - n). 

(26) 

(27) 

(28) 

where 0 < 8 < 0, and q 6 R. 

Between any two kicks 

Y - qY = 0. (29) 



For i e [tn + 0. /nM - 0), the solution of Eq. (29) is 

Y{tn,l-0) = Y(tn+0)c". 

Let us use the notations tn = nT, with T — 1 and 

Xn = X(in - 0) = lim X{n - e), 
C—>0 

Yn = Y(tn-0) = UmY{n-e). 

For r € (i„ — f, r„+1 — e), the general solution of (28) is 

V(t) = Yne^ tn)+eJ2 sin(?Z£,*) /'    dre^'T'6( 

Then 

Yn+i=e"[Yn+esm^DfnX) . 

Using (33), the integration of the first equation of (28) gives 

(30) 

r - m). 

Xn (5 — Xn 
i - c« r 

Y;+esin(<,D£X) CrV3   VI 

(31) 

(32) 

(33) 

(34) 

Let us consider the Caputo fractional derivative from Eqs.  (33) and (34). [t is defined by 

the equation 

Crfi ^DIX =0 iro\x = - 1 dr dXJT) 

r(l-0)Jo    (in-?)*    dr 

Using Y(T) = dX{r)/dr. tins relation can be rewritten as 

"-*   ftk+t 

,    (0 < 0 < 1). 

o^A-r(i-i3)^4    (*n-r)*' (35) 

where /,fcll = £fc + 1 = (A* + 1). and tk = fc, such that to = 0. For r € Otk,i*+i), equations 

(30) and (31) give 

Y(T) = Y(tk + 0)e«(r" tk> = y"(/jt.+ i - 0)e "e*(T"^ = 

Then 



ffc+1 
•An-tfcf. ./tr 

"V9*^ = 
-t*+i 

r/y. (36) 

As a result, equation (36) gives 
/*»+'    Y{T)dr 

= n,V~- v{n- *-1} [r(i - ft <?(<„ - *w 0) - r(i - 3, Q(tn - *fc))], (37) 

Here Via, b) is the incomplete Gamma function (27), where a and b are complex numbers. 

Using (35) and (37), we obtain 

n 1 

%D?nX .       l       V Yk+1W^(q, k - n),    (0 < 3 < 1), 

where 

JV2-^(o,6) = a* V(m>[r(l-fto6)-r(l - 3,a(b+!))}. 

Substitution of (38) into (33) and (34) gives 

n 1 

Yr,,i = e" [Yn + c sin( £ Yk+i Wa.0(q, k - »))]. 

Xn+i — Xn 
1 - 

fe=0 

n-1 

Kn + gsin(      _     53 *WiWa-/»(«»fc - n)) 
fe=0 

(38) 

(39) 

(40) 

(41) 

Equations (40) and (41) can be presented in the form of Eqs. (25) and (26). 

This ends the proof.     D 

The iteration equations (25) and (26) define a fractional generalization of the dissipative 

standard map. For 8 = 0 this map gives the Zaslavsky map (5) and (6) with 

p-(l-e-«)/9 (42) 

and n = 0. 



V. FRACTIONAL DERIVATIVE IN THE UNKICKED TERMS AND THE SEC- 

OND FRACTIONAL DISSIPATIVE STANDARD MAP 

In this section we suggest a fractional generalization of the differential equation for a 

kicked damped rotator with fractional derivatives in the unkicked terms and derive the 

corresponding discrete map. 

We consider the fractional generalization of equation (11) in the form 

aD?X(t) - q0D?X(t) = esin(A')^^-n), (43) 

where 

q € R,     1. < a < 2,    3 = a - 1, 

and 0Df is the Etiemann-Liouville fractional derivative [7-91, which is defined by Eq. (16). 

This equation has fractional derivatives in the unkicked terms, i.e. on the left-hand side of 

Eq. (43). We use the minus in the left-hand side of Eq. (43), where q can have a positive 

or negative value. 

Proposition 3. The fractional differential equation of the. Inched system (4$) is equiva- 

lent, to the discrete map 

*»+* = n * n £ n-' w°te>k ~ n ~ V> t44) 

Yn+1=e«[Yn + esm(Xn)\, (45) 

where the functions Wa(a,b) are defined by 

Wa(a, b) = fi'-V^'l> [r(o - hob) - I> - l,a(6 + 1))], (46) 

andT(a, b) is the incomplete Gamma function (27). 

Proof. Let us define an auxiliary variable £(r) such that 

££>f-^ = *(*), (47) 

where QD?"® is the Capnto fractional derivative (24). Using 

0/?-° ? D\~ai = m - *(0),     (0 < 2 - Q < 1). (48) 

10 



we obtain 

aD°X = Of olfX = Dl oil a 0
C'A2"^ = A2(^(0 ~«(0)) = Dfr (49) 

and 
>1      rl-8 

(iD?X = DlairPX = DlQI? "X = 

= D\ all « f A2 *£ = Dim - e(0)) = Dfc 

Substitution of (49), (50) and (47) into Eq. (43) gives 

OC 

D'fZ - qD\i = e sin( f D? ~a£) ]T <5(<; - n).    (1 < a < 2). 

The fractional equation (51) can be presented in the Hamiltonian form 

c ...... y 

Y-qY = eam{$D%-*{)'£6(t-n),    (1< a < 2,    ?eR). 

Using Eq. (26) of Proposition 2, we obtain 

, n-1 

For (X„, 34)i we use equation (88) in the form 

*„ = W* = r(a x 11^+1^(9. *"«)• 
•'ik-o 

As a result, we have 

Xn+l = rfa - 1) 2- y*+1^«(9'* ~ n ~ ^' 
'  fe=0 

V"        — *>« J n .f J — t. >;. +csin(A„) 

where Wa(a, h) is defined in (46). This ends the proof.     • 

If we use the variables 

Pn = fiYn,    b = -e
q,    Z = -fieeq

l 

(50) 

(51) 

(52) 

(53) 

(54) 

11 
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FIG. 1: Structures of the chaotic at tractors for different, values of K obtained after M)5 iterations 

(F = 5, ft = 0); a = 1.9975 in Figs. la-e. a) K = 12.83; b) K - 12.87; c) if = 12.93; d) zoom of 

Fig. l.c; e) K = 12.97: f) a - 2, K = 12.93. 

then equations (44) and (45) give 

A'n, j - f&Z\) £ Pfc+i^a(9, * - n - 1). 
Jc-o 

Pn*i=-bPn-Zsin{Xn), 

(55) 

(56) 

12 



FIG. 2: Structures of the fractional chaotic attractors for K = 12.93 and different, values of a 

obtained after 105 iterations (V = 5, 12 = 0). 

These equations can be considered as a fractional generalization of the dissipative standard 

map equations (7) and (8) with 0 = 0. For a =• 2, this fractional dissipative standard map 

gives the dissipative standard map that is described by Eqs. (7) and (8). 

13 



FIG. 3: Attracting trajectories for K = 12.93 and small values of a obtained after 105 iterations 

(r = 5, 0 = 0). 

VI.    NUMERICAL SIMULATIONS 

Numerical simulations were performed for the second fractional dissipative standard map 

(Eqs. (55) and (56)). First we used our code to reproduce the results presented in Fig. 1 from 

[19] for the structures of the chaotic attractors of the dissipative standard map at the window 

of the ballistic motion near K « 4ir (q — —5, K = eexp(g), and used in [19] I' is equal 

to -q) for the fractional standard map with a = 2 and obtained a perfect agreement (an 

example is given in Fig. If). As or decreases slightly from a — 2 to o• = 1.9975, the window 

of the ballistic motion shrinks and moves to the higher values of K. Already for a = 1.9975 

in Figs, la-e the ballistic motion appears for K > 12.86 and disappears at K = 12.97. The 

window is completely closed at a « 1.9969. The structures of two symmetric attractors 

with disjoint basins which appear within the window (Figs. lb,c) is also very different from 

the structures of the dying attractors of the dissipative standard map [1, 19]. The attractor 

in Fig. Id evolves from period 8 trajectory to period 4, period 2, and, finally, period 1 

trajectory slowly moving in the direction of the tipper left corner with the step of the order 

of 10 7. 

When a decreases further, the structures of the fractional chaotic attractors evolve in 

the manner presented in Fig. 2, where one can find one-scroll, two-scroll, and four-scroll 

fractional chaotic attractors, strongly deviating from the chaotic attractor of the dissipative 

standard map Fig. If (see also [191). The problem of existence of multi-scroll fractional 

chaotic attractors was considered in [22! but for the fractional differential equations with 

14 



the Caputo derivatives. For values of a near 1 fractional chaotic attractor turns into period 

two and for smaller values period one attracting trajectories Fig. 3. 

VII.    CONCLUSION 

The suggested discrete maps with memory are generalizations of the dissipative standard 

map, These maps describe fractional dynamics of complex physical systems. The suggested 

fractional dissipative standard maps demonstrate a chaotic behavior with a new type of 

attractors. The interesting property of these fractional maps is long-term memory. As a 

result, a present, state of evolution depends on all past states with the weight functions. The 

fractional dissipative standard maps are equivalent to the correspondent fractional kicked 

differential equations. Note that to derive discrete maps an approximation for fractional 

derivatives of these equations is not used. 

Computer simulations of the suggested discrete maps with memory prove that the non- 

linear dynamical systems, which are described by the equations with fractional derivatives, 

exhibit a new type of chaotic motion. This type of motion demonstrates a fractional gener- 

alization of attractors. 

The special cases of discrete maps have been studied to describe the properties of the frac- 

tional chaotic attractors of these differential equations. Under a. wide range of circumstances 

such maps give rise to chaotic behavior. 
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